Kunnen computers taal leren? Het is een van de grote vragen van deze tijd en 7 november jl. legde Danny Merkx in Nijmegen een nieuw stukje van de puzzel. Hij promoveerde er op een proefschrift waarin hij onderzocht of het hielp als je computers plaatjes laat zien.
Merkx bood de computer daarvoor een verzameling plaatjes aan – bijvoorbeeld gehaald van de website Flickr – die beschreven waren door vrijwilligers: ‘een hond rent door het gras’, ‘een wit hondje in de sneeuw’, ’twee vrouwen op een tractor’. Als de computer hierdoor getraind was, bleek het in staat om ook op een nieuwe foto te zien of er een hond op voorkwam. En dat was niet alleen het geval als de beschrijving was uitgeschreven, maar ook als hij was ingesproken – terwijl gesproken taal veel moeilijker te analyseren is, bijvoorbeeld doordat er allerlei uitspraakvariatie is, of doordat we in gesproken taal geen pauzes leggen tussen woorden maar alles aan elkaar plakken. Bovendien wist de computer voor de training begon niets van taal: hij kende geen woorden, hij wist zelfs niet wat woorden waren.
Dat toevoegen van plaatjes om taal te leren is nieuw. De bestaande ’taalmodellen’ – ook die verantwoordelijk zijn voor de successen van chatbots of Google Translate – worden alleen maar getraind op tekst. Zij leren taal door heel veel heel grote verzamelingen teksten met elkaar te vergelijken. Dat is waarschijnlijk geen heel reële weerspiegeling van hoe kinderen woorden leren, zei Merkx tijdens zijn promotie. Zij hebben ook ouders die bijvoorbeeld op een hond wijzen en dan zeggen ‘hond’. Vandaar dat Merkx ook voor computers geïnteresseerd is in multimodaal leren. Nu zijn er ook andere ‘modaliteiten’ dan het zicht (het gehoor, de reuk, enzovoort), maar het visuele is voor de computer nu eenmaal het makkelijkst te analyseren. Er zijn wel databases van plaatjes, maar niet van geuren.