hover-tekst: “einde trip”? Ik mag hopen dat hij nog oneindig doortript in zijn eeuwig fractalvelden.
#4
KJ
Fractals zijn leuk, maar ze beschrijven natuurlijk niet de natuur. Het is meer dat fractals en de natuur soms allebei tot vormen komen die verdomd veel op elkaar lijken. De natuur heeft een minimum-resolutie (het atoom) waar fractals geen last van hebben, en bovendien worden veel vormen in de natuur door allerlei externe factoren verstoord (planten buigen in de richting van de zon, bomen hebben takken op vreemde plaatsen vanwege ziektes, rivierbeddingen worden verstoord door – weet ik veel – komeetinslagkraters etc.) Fractals zijn natuur-light.
#5
knelistonie
e, pi, sinus, cosinus, n-log, spiraal, ellips, zeshoek, normaalverdeling, fractals, noem ze maar op, de constanten in de natuur.
#6
DJ
black swan
#7
boog
“De natuur heeft een minimum-resolutie (het atoom)”
Hoe naïef.
Overigens was “The Science of Fractal Images” een van de eerste wetenschappelijke boek die ik ooit kocht. Met hoofdstukken van Benoit zelf, een hoofdstuk met fractal-achtige natuurfoto’s, en -de reden voor de aanschaf- veel info over hoe je zelf computerprogramma’s kom schrijven voor die heersende fractal plaatjes.
#8
KJ
@boog; Hoe naief Hoe pedant.
#9
knelistonie
Dit berichtje is geen kaas van te maken, hoewel het er serieus uitziet.
Fractals zijn leuk, maar ze beschrijven natuurlijk niet de natuur. Het is meer dat fractals en de natuur soms allebei tot vormen komen die verdomd veel op elkaar lijken.
Dat is de definitie van een model.
#12
KJ
@JSk; Hm. Tja. Niet helemaal. Er is een deelverzameling ‘natuur’ en een deelverzameling ‘fractale beschrijvingen’ die overlappen.
De vraag was retorisch KJ. Volgens mij is dat de definitie van een model. Zelfs de Tweede Wet van Newton (iets met versnelling) is ook een benadering.
#15
boog
@Trialanderror: Wolfram’s A new kind of sciences is natuurlijk wel het meest bizarre, pompeuze, zelf-feliciterende, niet gehinderd door zelfbeperking, door ja-knikkers aangemoedigde wetenschapsboek van de laatste 20 jaar.
De totale tegestelling dus, van Mandelbrots The Fractal Geometry of Nature
Reacties (15)
Waarschuwing, filmpje in link niet bekijken na gebruik van welk geestverruimend middel dan ook. Je komt er namelijk niet meer uit.
*waar ben ik*
Deze man is een genie.
hover-tekst: “einde trip”? Ik mag hopen dat hij nog oneindig doortript in zijn eeuwig fractalvelden.
Fractals zijn leuk, maar ze beschrijven natuurlijk niet de natuur. Het is meer dat fractals en de natuur soms allebei tot vormen komen die verdomd veel op elkaar lijken. De natuur heeft een minimum-resolutie (het atoom) waar fractals geen last van hebben, en bovendien worden veel vormen in de natuur door allerlei externe factoren verstoord (planten buigen in de richting van de zon, bomen hebben takken op vreemde plaatsen vanwege ziektes, rivierbeddingen worden verstoord door – weet ik veel – komeetinslagkraters etc.) Fractals zijn natuur-light.
e, pi, sinus, cosinus, n-log, spiraal, ellips, zeshoek, normaalverdeling, fractals, noem ze maar op, de constanten in de natuur.
black swan
“De natuur heeft een minimum-resolutie (het atoom)”
Hoe naïef.
Overigens was “The Science of Fractal Images” een van de eerste wetenschappelijke boek die ik ooit kocht. Met hoofdstukken van Benoit zelf, een hoofdstuk met fractal-achtige natuurfoto’s, en -de reden voor de aanschaf- veel info over hoe je zelf computerprogramma’s kom schrijven voor die heersende fractal plaatjes.
@boog; Hoe naief Hoe pedant.
Dit berichtje is geen kaas van te maken, hoewel het er serieus uitziet.
http://www.faqt.nl/wetenschap/lichtjaren-grote-snaren-ontdekt/
Ook aardig. De oude meester legt het zelf uit: http://www.ted.com/talks/benoit_mandelbrot_fractals_the_art_of_roughness.html
Fractals zijn leuk, maar ze beschrijven natuurlijk niet de natuur. Het is meer dat fractals en de natuur soms allebei tot vormen komen die verdomd veel op elkaar lijken.
Dat is de definitie van een model.
@JSk; Hm. Tja. Niet helemaal. Er is een deelverzameling ‘natuur’ en een deelverzameling ‘fractale beschrijvingen’ die overlappen.
Fractals zijn mooi maar besides the point.
Cellular automata, daarentegen…
http://www.youtube.com/watch?v=60P7717-XOQ
De vraag was retorisch KJ. Volgens mij is dat de definitie van een model. Zelfs de Tweede Wet van Newton (iets met versnelling) is ook een benadering.
@Trialanderror: Wolfram’s A new kind of sciences is natuurlijk wel het meest bizarre, pompeuze, zelf-feliciterende, niet gehinderd door zelfbeperking, door ja-knikkers aangemoedigde wetenschapsboek van de laatste 20 jaar.
De totale tegestelling dus, van Mandelbrots The Fractal Geometry of Nature