Het plaatje hierboven toont de noordelijke koepel van de Vrijdagsmoskee in Isfahan. Een inscriptie vertelt dat het gewelf is gebouwd door een voorname hoveling, Taj al-Molk, in het jaar dat wij 1088 noemen. De constructie heeft een doorsnede van ongeveer negen meter: niet heel groot, maar toch noemde de architectuurhistoricus Arthur Pope het in zijn boek Persian Architecture “perhaps the most perfect dome known”.
Hij had het ook over “the perfection of a sonnet”, en hoewel ik die vergelijking niet zo goed begrijp, is wel duidelijk dat hij onder de indruk was van deze koepel. Daar is ook alle reden toe, want dit gewelf kan eigenlijk niet bestaan. Dat vergt wat uitleg.
Rond en vierkant
Koepels hebben de onhebbelijke eigenschap rond te zijn. Als je de koepel op de grond zet, levert dat geen problemen op, denk maar aan een iglo. Het wordt anders als je de koepel bovenop een gebouw wil zetten. De Romeinse architect die het Pantheon bouwde, ontweek het probleem door onder het gewelf een eveneens rond gebouw te plaatsen, maar dit is vaak geen praktische vorm. Bouw maar eens een kast voor een ronde kamer.
Kortom: hoe plaatsen we een ronde koepel op een vierkante ruimte, een iglo bovenop een kubus? De simpelste oplossing is dat je in het dak van de kubus een rond gat maakt en daaromheen de koepel bouwt. Dat is ook wel eens gedaan, zoals in het charmante vijfde-eeuwse jachtpaleisje te Sarvestan in het zuiden van Iran. Er kleeft echter een heel groot nadeel aan deze constructiewijze: het gewicht van de koepel rust op slechts vier plaatsen, namelijk daar waar de onderrand van de koepel rust op de verticale muren. De koepel kan daarom nooit al te groot worden, omdat het gewicht de muren uit elkaar duwt.