Algoritmes leiden niet automatisch tot eerlijkere selectie
DATA - Steeds meer werkgevers zetten algoritmes in voor werving en selectie. Bij Nike en Unilever is het niet meer ongewoon om pas in de derde ronde van de sollicitatieprocedure in gesprek te komen met een menselijke medewerker. Vooroordelen en ongelijkheid kunnen zo meer ruimte krijgen, volgens Annemarie Hiemstra en Isabelle Nevels.
Het aantal aanbieders van geautomatiseerde en digitale selectiemethoden neemt toe. Zo voorspelt het algoritme van het Nederlands-Chinese bedrijf Seedlink op basis van taalgebruik van sollicitanten wie er het meest geschikt is voor een functie en maakt het Amerikaanse HireVue gebruik van video-opnames om tot een automatisch gegenereerde beoordeling te komen.
Dit sluit nauw aan bij het huidige debat. Is het nog wel nodig om klassieke kennis, karaktereigenschappen en competenties, typisch gemeten met psychologische vragenlijsten en assessments, in kaart te brengen? Wellicht dat meer impliciete patronen, die via algoritmes herkend worden op basis van grote volumes data (zoals geschreven tekst, of video’s van sollicitanten), even goede of zelfs betere resultaten kunnen behalen bij het selecteren van de beste kandidaat.
Organisaties hebben slechts de beschikking over hun eigen inschatting van de meerwaarde en eerlijkheid van selectie via computerondersteuning. Wetenschappelijke bewijs voor het gebruik van technologieën is er echter nog nauwelijks. Hoe kunnen we ervoor zorgen dat computersystemen op een verantwoorde manier worden ingezet?